Learning latent block structure in weighted networks
نویسندگان
چکیده
منابع مشابه
Learning latent block structure in weighted networks
Community detection is an important task in network analysis, in which we aim to learn a network partition that groups together vertices with similar community-level connectivity patterns. By finding such groups of vertices with similar structural roles, we extract a compact representation of the network’s large-scale structure, which can facilitate its scientific interpretation and the predict...
متن کاملLearning latent structure in complex networks
Latent structure in complex networks, e.g., in the form of community structure, can help understand network dynamics, identify heterogeneities in network properties, and predict ‘missing’ links. While most community detection algorithms are based on optimizing heuristic clustering objectives such as the Modularity, it has recently been shown that latent structure in complex networks is learnabl...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملStructure Learning in Weighted Languages
We present Minimum Description Length techniques for learning the structure of weighted languages. MDL is already widely used both for segmentation and classification tasks, and here we show it can be used to formalize further important tools in the descriptive linguists’ toolbox, including the distinction between accidental and systematic gaps in the data, the detection of ambiguity, the selec...
متن کامل structure learning in bayesian networks using asexual reproduction optimization
a new structure learning approach for bayesian networks (bns) based on asexual reproduction optimization (aro) is proposed in this letter. aro can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. in aro, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complex Networks
سال: 2014
ISSN: 2051-1310,2051-1329
DOI: 10.1093/comnet/cnu026